Detection of the third and fourth heart sounds using Hilbert-Huang transform
نویسندگان
چکیده
BACKGROUND The third and fourth heart sound (S3 and S4) are two abnormal heart sound components which are proved to be indicators of heart failure during diastolic period. The combination of using diastolic heart sounds with the standard ECG as a measurement of ventricular dysfunction may improve the noninvasive diagnosis and early detection of myocardial ischemia. METHODS In this paper, an adaptive method based on time-frequency analysis is proposed to detect the presence of S3 and S4. Heart sound signals during diastolic periods were analyzed with Hilbert-Huang Transform (HHT). A discrete plot of maximal instantaneous frequency and its amplitude was generated and clustered. S3 and S4 were recognized by the clustered points, and performance of the method was further enhanced by period definition and iteration tracking. RESULTS Using the proposed method, S3 and S4 could be detected adaptively in a same method. 90.3% of heart sound cycles with S3 were detected using our method, 9.6% were missed, and 9.6% were false positive. 94% of S4 were detected using our method, 5.5% were missed, and 16% were false positive. CONCLUSIONS The proposed method is adaptive for detecting low-amplitude and low-frequency S3 and S4 simultaneously compared with previous detection methods, which would be practical in primary care.
منابع مشابه
Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملAutomatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)
Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملDetection of the S2 Split Using the Hilbert and Wavelet Transforms
Abstract. Pulmonary hypertension (PH) is a serious heart condition that is difficult to diagnose in ambulatory settings. Heart sounds is one of the most relevant diagnosis signal in this context. Usually, PH leads to wide S2 split between the aortic valve close sound (A2) and the pulmonary valve close sound (P2). Even though the progresses made, there isn’t still an automatic and non-supervised...
متن کاملDetermining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm
Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...
متن کامل